Dexamethasone Ameliorates H2S-Induced Acute Lung Injury by Alleviating Matrix Metalloproteinase-2 and -9 Expression
نویسندگان
چکیده
Acute lung injury (ALI) is one of the fatal outcomes after exposure to high levels of hydrogen sulfide (H2S), and the matrix metalloproteinases (MMPs) especially MMP-2 and MMP-9 are believed to be involved in the development of ALI by degrading the extracellular matrix (ECM) of blood-air barrier. However, the roles of MMP-2 and MMP-9 in H2S-induced ALI and the mechanisms of dexamethasone (DXM) in treating ALI in clinical practice are still largely unknown. The present work was aimed to investigate the roles of MMP-2 and MMP-9 in H2S-induced ALI and the protective effects of DXM. In our study, SD rats were exposed to H2S to establish the ALI model and in parallel, A549 cells were incubated with NaHS (a H2S donor) to establish cell model. The lung HE staining, immunohistochemisty, electron microscope assay and wet/dry ratio were used to identify the ALI induced by H2S, then the MMP-2 and MMP-9 expression in both rats and A549 cells were detected. Our results revealed that MMP-2 and MMP-9 were obviously increased in both mRNA and protein level after H2S exposure, and they could be inhibited by MMP inhibitor doxycycline (DOX) in rat model. Moreover, DXM significantly ameliorated the symptoms of H2S-induced ALI including alveolar edema, infiltration of inflammatory cells and the protein leakage in BAFL via up-regulating glucocorticoid receptor(GR) to mediate the suppression of MMP-2 and MMP-9. Furthermore, the protective effects of DXM in vivo and vitro study could be partially blocked by co-treated with GR antagonist mifepristone (MIF). Our results, taken together, demonstrated that MMP-2 and MMP-9 were involved in the development of H2S-induced ALI and DXM exerted protective effects by alleviating the expression of MMP-2 and MMP-9. Therefore, MMP-2 and MMP-9 might represent novel pharmacological targets for the treatment of H2S and other hazard gases induced ALI.
منابع مشابه
Neutrophil elastase ameliorates matrix metalloproteinase-9 to promote lipopolysaccharide-induced acute lung injury in mice 1.
PURPOSE To investigate the regulatory roles of neutrophil elastase (NE) and matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. METHODS To construct LPS-induced ALI mouse models, wild-type C57BL/6 mice were administered 5.0 mg/kg of LPS through endotracheal, and/or 1.0 mg/kg of ONO-5046, and/or 20.0 mg/kg of chemically modified tetracycline-...
متن کاملStudy of Antimetastatic Effect of Genistein Through Inhibition of Expression of Matrix Metalloproteinase in A-549 Cell Line
The lung cancer is one of the most dangerous cancers and is also the leading cause of cancer death worldwide, accounting for about 1.3 million deaths annually. However in clinical practice, lung cancer therapies commonly do with chemotherapy, although it is hard because the lung cancer may progress to metastasis stage. The metastasis of lung cancer is highly dependent of expression of matrix me...
متن کاملExpression of matrix metalloproteinases in pigs with hyperoxia-induced acute lung injury.
The aim of this study was to determine the role of matrix metalloproteinases (MMPs) in the pathogenesis of acute lung injury induced by hyperoxia. Twenty-three pigs were exposed in sealed cages to >80% oxygen (for 24-120 h) or room air. Correlation between MMP-2/MMP-9 activity, measured by gelatin zymography in bronchoalveolar lavage fluid (BALF), and the histological findings and pathological ...
متن کاملMatrix metalloproteinase-9 (MMP-9) Expression in Non-Small Cell Lung Carcinoma and Its Association with Clinicopathologic Factors
Background & Objective: Matrix metalloproteinases-9 (MMP-9) is one of the most important enzymes to breakdown extracellular matrix which plays a major role in tumor invasion and metastasis. This study aimed to determine tumor MMP-9 expression in non-small-cell lung carcinoma (NSCLC) and whethe...
متن کاملDexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats
Previous studies have identified that dexmedetomidine (DEX) treatment can ameliorate the acute lung injury (ALI) induced by lipopolysaccharide and ischemia-reperfusion. However, the molecular mechanisms by which DEX ameliorates lung injury remain unclear. The present study investigated whether DEX, which has been reported to exert effects on oxidative stress, mitochondrial permeability transiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014